MODELOS ATÓMICOS
A lo largo del tiempo existieron varios modelos atómicos y algunos más elaborados que otros, presentados por diferentes científicos que proponían diferentes teorías, que representaban el átomo y sus diferentes partes. Desde el siglo V a. de C. la humanidad ha escuchado hablar de átomos, como las partículas fundamentales de la materia. Sin embargo, debido a que los átomos son tan pequeños, no es posible verlos a simple vista, por esta razón, se han propuesto varios modelos y teorías acerca de cómo son estas partículas fundamentales.
El Modelo de DALTON (1808):
John Dalton (1766-1844) fue un químico y físico británico que creó una importante teoría atómica de la materia basada en las leyes de la combinación química. Considerado el padre de la teoría atómica – molecular. Para Dalton los átomos eran esferas rígidas. Su teoría se puede resumir así:
• Los elementos químicos están formados por partículas muy pequeñas e indivisibles llamadas átomos.
• Todos los átomos de un elemento químico dado son idénticos en su masa y demás propiedades.
• Los átomos de diferentes elementos químicos son distintos, en particular sus masas son diferentes.
• Los átomos son indestructibles y retienen su identidad en los cambios químicos.
Los compuestos se forman cuando átomos de diferentes elementos se combinan entre sí, en una relación de números enteros sencilla, formando entidades definidas (hoy llamadas moléculas).
El Modelo de THOMSON (1898):
Sir Joseph John Thomson (1856 -1940), fue un físico británico que descubrió la existencia del ELECTRÓN, partícula subatómica cargada negativamente. Según el modelo de Thomson, conocido como "modelo del pastel de pasas", el átomo consistía en una esfera uniforme de materia cargada positivamente en la que se hallaban incrustados los electrones de un modo parecido a como lo están las semillas en una sandía (patilla). Este sencillo modelo explicaba el hecho de que la materia fuese eléctricamente neutra, pues en los átomos de Thomson la carga positiva era neutralizada por la negativa.
Para explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Thomson ideó un átomo parecido a un pastel de frutas: una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella.
El Modelo de Rutherford (1911):
Sir Ernst Rutherford (1871 - 1937), famoso hombre de ciencia inglés que obtuvo el premio Nobel de Química en 1919, fue un físico neozelandés que identificó en 1898 dos tipos de las radiaciones emitidas por el Uranio, a las que llamó alfa y beta.
El hecho de que sólo unas pocas radiaciones sufriesen desviaciones hizo suponer que las cargas positivas que las desviaban estaban concentradas dentro de los átomos ocupando un espacio muy pequeño en comparación a todo el tamaño atómico; esta parte del átomo con electricidad positiva fue llamado
NÚCLEO.
En el modelo de Rutherford, los electrones se movían alrededor del núcleo como los planetas alrededor del Sol. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro. Los electrones no caían en el núcleo, ya que la fuerza de atracción electrostática era contrarrestada por la tendencia del electrón a continuar moviéndose en línea recta. Este modelo fue satisfactorio hasta que se observó que estaba en contradicción con una información ya conocida en aquel momento: de acuerdo con las leyes del electromagnetismo, un electrón o todo objeto eléctricamente cargado que es acelerado o cuya dirección lineal es modificada, emite o absorbe radiación electromagnética.
El Modelo de Bohr (1913):
Después de los descubrimientos de Rutherford, los científicos pensaron en el átomo como un sistema solar microscópico, con los electrones girando en órbita alrededor del núcleo, Bohr al principio supuso que los electrones se movían en órbitas circulares, pero la física clásica decía que una partícula con carga eléctrica debía perder energía, lo que llevaría en un momento hacer al electrón caer hacia el núcleo, entonces Bohr dijo que las leyes conocidas de la física eran inadecuadas para describir algunos procesos de los átomos. El físico Danés Niels Bohr, premio Nobel de Física en 1922, introdujo en 1913 los tres postulados siguientes:
Primer Postulado: El producto del impulso o cantidad de movimiento (mv) del electrón por la longitud de la órbita que describe es un múltiplo del cuanto de energía (primer postulado).
Segundo Postulado: Mientras un electrón gira en una orbita fija no emite energía radiante.
Tercer Postulado: Un electrón puede saltar desde una orbita de energía a otra inferior de menor energía. En este salto el átomo emite una cantidad de energía radiante igual a la diferencia de energía de los estados inicial y final.
Aunque la teoría de Bohr fue de gran utilidad, tenía fallas, para empezar años después el electrón se identificó con un comportamiento de onda y en este modelo eso no se tomó en cuenta, además el modelo solo funcionaba para el hidrógeno, dejando fuera las relaciones electrón - electrón en átomos de muchos electrones.
Modelo Cuántico:
El físico E. Schrödinger estableció el modelo mecano-cuántico del átomo, ya que el modelo de Bohr suponía que los electrones se encontraban en órbitas concretas a distancias definidas del núcleo; mientras que, el nuevo modelo establece que los electrones se encuentran alrededor del núcleo ocupando posiciones más o menos probables, pero su posición no se puede predecir con exactitud.
Con estas dos partículas, se intentó construir todos los átomos conocidos, pero no pudo ser así porque faltaban unas de las partículas elementales del núcleo que fue descubierto por J. Chadwick en 1932 y que se llamó neutrón. Esta partícula era de carga nula y su masa es ligerísimamente superior a la del protón (1,6748210-27kg.). Sin negar el considerable avance que supuso la teoría atómica de Bohr, ésta solo podía aplicarse a átomos muy sencillos, y aunque dedujo el valor de algunas constantes, que prácticamente coincidían con los valores experimentales sencillos, el modelo no fue capaz de explicar los numerosos saltos electrónicos, responsables de las líneas que aparecen en los espectros de los átomos que poseen más de un electrón. Al modelo de Bohr se le fueron introduciendo mejoras, pero la idea de un átomo compuesto por orbitas alrededor de un núcleo central puede considerarse demasiado sencilla, no fue posible interpretar satisfactoriamente el espectro de otros átomos con más de un electrón (átomos poli electrónicos) ni mucho menos la capacidad de los átomos para formar enlaces químicos
ESTRUCTURA DEL ÁTOMO
ÁTOMO Y MOLÉCULA
El átomo es la mínima unidad de materia que puede existir representando las características de un elemento. Se representa por medio de Símbolos: Es la letra o letras que se emplean para representarlos. EJEMPLO: Al (aluminio), Na (sodio), P (fósforo), C (carbono), He (helio), etc.
Una molécula es un conjunto de átomos, iguales o diferentes, que se encuentran unidos mediante enlaces químicos. El caso que los átomos sean idénticos se da por ejemplo en el oxígeno (O2) que cuenta con dos átomos de este elemento; o pueden ser diferentes, como ocurre con la molécula del agua, la cual tiene dos átomos de hidrógeno y uno solo de oxígeno (H2O). También se puede definir como la mínima unidad que puede existir representando las características de compuestos y son representados en fórmulas que son la estructura fundamental de un compuesto. EJEMPLO: P2O5 (Pentóxido de di fósforo o Anhídrido fosfórico), BaCl2 (Cloruro de Bario), FeS (sulfuro de hierro II o Sulfuro ferroso), etc.
Fue descubierto por Ernest Rutherford a principios del siglo XX. Se encuentra en el núcleo. Tiene carga eléctrica positiva.
Constituyen los núcleos de los átomos junto a los protones. Fueron descubiertos en 1930 por dos físicos alemanes, Walter Bothe y Herbert Becker. No tiene carga eléctrica ya que son neutros (igual cantidad de protones y electrones) por lo que tiene su carga 0
Se están moviendo constantemente alrededor del núcleo siguiendo unas órbitas. Fue descubierto por Joseph Thomson en 1897. Es una partícula subatómica. Tiene carga eléctrica negativa.
Se define al ion como un átomo o una molécula cargados eléctricamente, debido a que ha ganado o perdido electrones de su dotación normal, lo que se conoce como ionización.
Los iones cargados negativamente, producidos por la ganancia de electrones, se conocen como aniones y los cargados positivamente, consecuencia de una pérdida de electrones, se conocen como cationes.
Un catión es un ion (sea átomo o molécula) con carga eléctrica positiva, esto es, con defecto de electrones. Los cationes se describen con un estado de oxidación positivo.
Un anión es un ion (sea átomo o molécula) con carga eléctrica negativa, esto es, con exceso de electrones. Los aniones se describen con un estado de oxidación negativo.
ION + Mayor cantidad de protones en relación a los electrones
ÁTOMO NEUTRO Igual cantidad de protones y electrones
ION –Mayor cantidad de electrones en relación a los protones
NÚMERO ATÓMICO Y MASA ATÓMICA DE LOS ELEMENTOS
La masa atómica o número másico
La masa atómica es la cantidad de materia que tiene un átomo y generalmente se obtiene de sumar Z + N = A
Z= el número de protones
N= el número de neutrones
El número atómico:
El número atómico es el número entero positivo que equivale al número total de protones en un núcleo del átomo. Se suele representar con la letra Z. Es característico de cada elemento químico y representa una propiedad fundamental del átomo. Este hecho permitió clasificar a los elementos en la tabla periódica en orden creciente de número atómico.
MOLÉCULA:
Es un conjunto de átomos unidos unos con otros por enlaces fuertes. Es la expresión mínima de un compuesto o sustancia química, es decir, es una sustancia química constituida por la unión de varios átomos que mantienen las propiedades químicas específicas de la sustancia que forman.
Una macromolécula puede estar constituida por miles o hasta millones de átomos, típicamente enlazados en largas cadenas.
Cada molécula tiene un tamaño definido y puede contener los átomos del mismo elemento o los átomos de diversos elementos.
Una sustancia que está compuesta por moléculas que tienen dos o más elementos químicos, se llama compuesto químico.
CONFIGURACIÓN ELECTRÓNICA
La configuración electrónica de un átomo es una designación de la distribución de los electrones entre los diferentes orbitales, en las capas principales y las subcapas. La notación de la configuración electrónica utiliza los símbolos de subcapa (s, p, d y f) y cada uno con un superíndice que indica el número de electrones en ese subnivel.
Por ejemplo para el Li el cual tiene 3 electrones sería, 1s2 2s1; el número que se encuentra al lado de la subcapa es n, la letra representa el subnivel y el superíndice el número de electrones en ese subnivel.
Tipos de configuración electrónica
Para graficar la configuración electrónica existen cuatro modalidades, con mayor o menor complejidad de comprensión, que son:
- Configuración estándar: Se representa la configuración electrónica que se obtiene usando el cuadro de las diagonales. Es importante recordar que los orbitales se van llenando en el orden en que aparecen, siguiendo esas diagonales, empezando siempre por el 1s.
Aplicando el mencionado cuadro de las diagonales la configuración electrónica estándar, para cualquier átomo, es la siguiente:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6
- Configuración condensada: Los niveles que aparecen llenos en la configuración estándar se pueden representar con un gas noble (elemento del grupo VIII), donde el número atómico del gas coincida con el número de electrones que llenaron el último nivel. Los gases nobles son He, Ne, Ar, Kr, Xe y Rn.
- Configuración desarrollada: Consiste en representar todos los electrones de un átomo empleando flechas para simbolizar el spin de cada uno. El llenado se realiza respetando el principio de exclusión de Pauli y la Regla de máxima multiplicidad de Hund.
- Configuración semidesarrollada: Esta representación es una combinación entre la configuración condensada y la configuración desarrollada. En ella sólo se representan los electrones del último nivel de energía.
1) NÚMERO CUÁNTICO PRINCIPAL (n)
Representa los niveles energéticos. Se designa con números enteros positivos desde n=1 hasta n=7 para los elementos conocidos.
2) NÚMERO CUÁNTICO SECUNDARIO O AZIMUTAL ( l )
Determina el subnivel y se relaciona con la forma del orbital.
Cada nivel energético ( n ) tiene "n" subniveles.
3) NÚMERO CUÁNTICO MAGNÉTICO (m)
Representa los orbitales presentes en un subnivel.
4) NÚMERO CUÁNTICO POR SPIN (s)
Se relaciona con el giro del electrón sobre su propio eje. Al estar juntos en un mismo orbital, un electrón gira hacia la derecha y otro hacia la izquierda. Se le asignan números fraccionarios: -1/2 y +1/2